###
DOI:
:2018,31(8):-
←前一篇   |   后一篇→
本文二维码信息
基于CFD和BP神经网络的超声测风仪阴影效应补偿研究
张加宏, 孙林峰, 李敏
(南京信息工程大学)
The shadow effect compensation for ultrasonic anemometer based on CFD and BP neural network
摘要
图/表
参考文献
相似文献
本文已被:浏览 1329次   下载 0
    
中文摘要: 风速风向是气象观测的关键性参数,阴影效应对超声测风仪测量风速风向有显著影响。为了消除不同风速风向和温度条件下阴影效应导致的测量误差,结合超声波时差法测风原理提出了一种基于计算流体力学(CFD)仿真和反向传播(BP)神经网络数据处理的阴影效应补偿方法。首先通过CFD仿真软件Fluent对超声测风仪的风场进行模拟分析,获取了受阴影效应影响的风速、风向以及温度样本数据,然后利用这些样本从减小相对误差方面对BP神经网络算法在超声测风仪中应用的性能进行了研究与分析,最后利用超声测风仪风洞实验的测量数据对本文的阴影效应补偿方法的准确性进行了验证。研究结果表明:通过基于CFD和BP神经网络的预测模型对阴影效应进行修正后,测试系统风速风向的测量精度有显著的提升,可满足高精度超声测风的测量需求。本文的研究结果对于高精度超声测风仪的研制有一定的参考价值。
Abstract:Wind is a critical parameter of meteorological observation, and the shadow effect has a significant effect on the wind speed and direction measured by the ultrasonic anemometer. In order to eliminate the measurement error caused by the shadow effect under different wind speed and temperature conditions, a shadow effect compensation method based on computational fluid dynamics (CFD) simulation and back propagation (BP) neural network data processing is proposed in combination with the measuring principle of the ultrasonic time difference method. Firstly, the CFD simulation software—Fluent is used to simulate the wind field of ultrasonic anemometer. The wind speed, wind direction and temperature sample data affected by the shadow effect are obtained, and then the performance of BP neural network algorithm in ultrasonic anemometer is studied and analyzed by using these samples to reduce the relative error. Finally, the accuracy of the shadow effect compensation method in this paper is validated by using the wind tunnel data of the ultrasonic anemometer. The results show that the accuracy of the wind measurement is significantly improved after correcting the shadow effect by the prediciton model based on CFD and BP neural network, which can meet the high precision measurement requirements of ultrasonic anemometer. The results of this study have a certain reference value for the development of high precision ultrasonic wind measurement instrument.
文章编号:cg17001026     中图分类号:    文献标志码:
基金项目:国家自然科学基金项目
张加宏  孙林峰  李敏 南京信息工程大学
引用文本:


用微信扫一扫

用微信扫一扫