###
DOI:
:2008,21(6):-
本文二维码信息
基于BP神经网络的称重传感器静态非线性误差补偿研究
严洁 赵研 张俊利
(西安建筑科技大学,陕西,西安,710055)
Study on Static Nonlinear Error Compensating for Weighing Sensor Based on BP Neural Network
Yan Jie,Zhao Yan,Zhang Jun,Li
(Xian University of Architecture and Technology Xian, Shaanxi, 710055)
摘要
图/表
参考文献
相似文献
本文已被:浏览 954次   下载 0
    
中文摘要: 在混凝土智能材料和纤维材料的称量中,混凝土搅拌站的计量准确度是至关重要的。神经网络具有对无法建立确定模型的非线性输入输出映射关系,尤其是输入输出映射关系不断动态变化的场合具有得天独厚的优势,故本文中利用其对混凝土搅拌站的称重系统输入输出映射关系进行逆映射,以得到趋向称重系统输入真值的计量值,提高混凝土搅拌站的计量准确度。
Abstract:The system measuring accuracy and quality of the mixed concrete of concrete central mixing station are essential for adding of intelligent material and fiber material. Neural networks, with their remarkable ability to derive meaning from complicated, imprecise nonlinear input output data, can be used to extract patterns and detect trends that are dynamically continuous change.. Therefore, in this article BP Neural Network is applied to map the input output relation of the weighting system for concrete central mixing station so that the inputs can be accurately measured. The system measuring accuracy and quality of the mixed concrete of concrete central mixing station are increased.
文章编号:cg080628     中图分类号:    文献标志码:
基金项目:
严洁  $2  张俊利 西安建筑科技大学,陕西,西安,710055
Yan Jie  Zhao Yan  Zhang Jun  Li Xian University of Architecture and Technology Xian, Shaanxi, 710055
引用文本:


用微信扫一扫

用微信扫一扫