本文已被:浏览 954次 下载 0次
中文摘要: 在混凝土智能材料和纤维材料的称量中,混凝土搅拌站的计量准确度是至关重要的。神经网络具有对无法建立确定模型的非线性输入输出映射关系,尤其是输入输出映射关系不断动态变化的场合具有得天独厚的优势,故本文中利用其对混凝土搅拌站的称重系统输入输出映射关系进行逆映射,以得到趋向称重系统输入真值的计量值,提高混凝土搅拌站的计量准确度。
中文关键词: 混凝土搅拌站 高准确度称重 BP神经网络
Abstract:The system measuring accuracy and quality of the mixed concrete of concrete central mixing station are essential for adding of intelligent material and fiber material. Neural networks, with their remarkable ability to derive meaning from complicated, imprecise nonlinear input output data, can be used to extract patterns and detect trends that are dynamically continuous change.. Therefore, in this article BP Neural Network is applied to map the input output relation of the weighting system for concrete central mixing station so that the inputs can be accurately measured. The system measuring accuracy and quality of the mixed concrete of concrete central mixing station are increased.
文章编号:cg080628 中图分类号: 文献标志码:
基金项目:
引用文本: