###
DOI:
:2007,20(12):-
本文二维码信息
多声传感器异步融合算法
赵怀坤 林岳松 郭云飞
(杭州电子科技大学信息与控制研究所,浙江 杭州 310018)
The Asynchronous Fusion Algorithm for Acoustic Sensors
ZHAO Huai-kun,LIN Yue-song,GUO Yun-fei
(Institute of Information and Control, Hangzhou Dianzi University, Hangzhou,Zhejiang,310018)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1156次   下载 0
    
中文摘要: 声探测定位技术是利用声传感器接收特定声波信号以确定声源的一种无源定位技术,它具有隐蔽性好、不易受干扰等优点。本文研究了仅能提供方位角信息的异步多声传感器无源探测系统数据融合问题,提出了一种适用于声传感器的在线估计可变周期融合算法。该算法首先采用伪线性算法,将非线性量测方程线性化;然后通过采用参数在线估计和基于运动模型向前追溯确保时间同步的方法,解决了目标跟踪时信号传输时延和传感器异步的问题。通过Monte Carlo仿真表明,在参数在线估计中,步长选取适当时,该算法可以满足声探测系统的精度要求,并且具有收敛快、精度高、稳定的特点。
中文关键词: 声传感器  纯方位  在线估计  伪线性
Abstract:The acoustic localization technique is used to detect and track the acoustic target. The technique is based on the acoustic sensors receiving the acoustic signals, and has many advantages. To the problem that the passive asynchronous multi-acoustic-sensor system only supplies bearing information, a new fusion algorithm using on-line parameter estimation is put forward based on pseudo-linear kalman filter (PLKF). Then the methods of on-line parameter estimation and tracking back the later information based on dynamic model in the algorithm to solve the problems of the time-delay in signal propagation and asynchronous sensors. Monte Carlo computer simulation shows that if the step is adequacy in on-line parameter estimation, this algorithm satisfies the precision of passive detection system and has a quick rate of convergence, lower localization error, and stability.
文章编号:cg071217     中图分类号:    文献标志码:
基金项目:
赵怀坤  林岳松  郭云飞 杭州电子科技大学信息与控制研究所,浙江 杭州 310018
ZHAO Huai-kun  LIN Yue-song  GUO Yun-fei Institute of Information and Control, Hangzhou Dianzi University, Hangzhou,Zhejiang,310018
引用文本:


用微信扫一扫

用微信扫一扫