###
DOI:
:2007,20(11):-
本文二维码信息
车载微加速度计信号的小波去噪技术研究
徐超,沈晓蓉,李建军,范耀祖
(北京航空航天大学 自动化科学与电气工程学院,北京 100083)
Research on Wavelet Denoising Method of Vehicle based MEMS Accelerator Signal
Xu Chao, Shen Xiao-rong, Li Jian-jun, Fan Yao-zu
(School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 979次   下载 0
    
中文摘要: 车载环境下由于微机械加速度计自身特点和受到车辆振动、电磁干扰等原因,其真实加速度信号往往受到严重的干扰,给数据分析带来很大困难。针对此种情况,结合对车载加速度计输出信号的分析假设了一种加速度信号,同时用真实的加速度计输出噪声作为干扰叠加在假设信号上,以信号的统计指标作为去噪效果的评价标准选择了合适的小波基,并据此对实际信号进行去噪处理证明:小波去噪方法非常适合于此类受到严重干扰的测量信号的去噪处理,去噪效果良好且计算分析简便。
Abstract:The analysis of vehicle based MEMS accelerometer output signal is often difficult just because of the characteristic of MEMS accelerometer, electromagnetic disturbing and the sensor is often disturbed by the vehicle vibration . Aimed at this circumstance, the paper hypothesized an acceleration signal based on the analysis of the vehicle based MEMS accelerometer output signal and added a real noise as the signal to be denoised. Selected a best wavelet in such signal denoising processing with the SNR(Signal Noise Ratio),error average and variance as the selection criterion. The experimentation based on the real output signal of a accelerometer proved that the wavelet denoise method is suitable for the denoising processing of such badly interfered signal , the performance is better than any other methods and the wavelet denoise method is also feasible in other circumstances.
文章编号:cg071120     中图分类号:    文献标志码:
基金项目:
徐超  沈晓蓉  李建军  范耀祖 北京航空航天大学 自动化科学与电气工程学院,北京 100083
Xu Chao  Shen Xiao-rong  Li Jian-jun  Fan Yao-zu School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
引用文本:


用微信扫一扫

用微信扫一扫