本文已被:浏览 2546次 下载 1336次
中文摘要: 电力变压器是直接影响电力系统安全运行的重要设备之一,目前多采用图像或侵入式传感测量的方式,本文设计了变压器声纹采集装置、特征提取方法、以及基于迁移学习的深度神经网络识别模型。首先,采集并预处理变压器噪声信号,对分帧信号进行时域和频域特征提取,获得声纹特征向量,然后,输入迁移学习算法模型,实现变压器直流偏磁、过负荷、以及绕组变形等8种工况的智能识别诊断,最后,设计声纹特征数据库建立方法,采集变压器运行声学样本,对声纹识别算法模型进行训练和优化。通过数据集对比测试和变电站部署应用,验证了算法模型的识别准确度和系统可行性,该装置可作为当前监测手段的有效补充,提高变压器综合监测和潜伏性缺陷识别能力。
Abstract:
keywords:
文章编号:cg210252 中图分类号:TP212 文献标志码:
基金项目:
Author Name | Affiliation | |
linchunqing_1973@163.com |
引用文本: